

Advanced magnetic x-ray spectroscopies for the fine understanding of magnetic nanomaterials

Amélie Juhin (IMPMC, Paris)

Outline

- 1. Motivation: bimagnetic nanoparticles and liquids
- 2. Key ideas of hard x-ray RIXS-MCD
- 3. Example n°1: interface quality in core@shell nanoparticles
- 4. Example n°2: magnetic anisotropies in core@shell nanoparticles
- 5. Example n°3: interparticle interactions in binary ferrofluids

Magnetic nanoparticles

Applications: magnetic recording, permanent magnets, biomedicine

→ Tuning of size, shape, composition

bimagnetic core@shell strategies

soft core @hard shell

hard core @soft shell

functionalization by paramagnetic complexes

Prado et al, Nature Communications 6, 10139 (2015)

Open question:

How to tune at will magnetic properties through fine tailoring?

Critical role of internal structure : thickness / composition / shape / interface quality What role does each magnetic component play **in the coupled object?**

Ferrofluids

Colloidal suspension of magnetic nanoparticles in a liquid carrier (water, oil)

- ferromagnetic material
- nanoparticle diameter in the 5-25 nm range

One particle = one magnetic dipole

Open questions:

How to tune macroscopic magnetic properties through nanoscale dipole interactions?

targeted applications, novel magnetic responsive materials

→ How does self-assembly of nanoparticles influence magnetic properties ?

→ Can binary mixtures build a new class of ferrofluids interesting for applications?

A combined approach

1s2p RIXS-MCD of 3d transition metal ions

1s2p RIXS-MCD: similar information as $L_{2,3}$ soft XMCD, though using hard x-rays in and out For what questions and samples is hard x-ray RIXS-MCD useful for ?

Samples

Questions

All samples unsuitable for soft x-rays:

Multilayers, buried layers Nanoparticles (> 5 nm) Liquids Systems under pressure

MCD enhancement (x10) w.r.t. K edge XMCD for iono-covalent compounds:

Oxides, molecular compounds...

Electronic and magnetic structure:

Spectroscopy measurements

Valence, coordination, magnetic moment

Magnetic anisotropies:

Magnetometry measurements

Sikora, AJ, et al. Phys. Rev. Lett. 105, 037202 (2010) ESRF Highlights 2010

How does RIXS-MCD compare to *K*-edge XMCD ?

- Reduced lifetime broadening using RIXS detection
- MCD multiplied by 10 by comparison to Total Fluo. Yield detection

Is the intensity enhancement only due to the reduced lifetime broadening?

Is the intensity enhancement only due to the reduced lifetime broadening?

XMCD spectra measured in TFY with high signal-to-noise (average of 40 spectra)

→ Partial deconvolution from 1s corehole lifetime broadening (GNXAS)

Reduction of lifetime broadening does only part of the MCD enhancement that is measured in RIXS

Example 1. Buried interface in core@shell nanoparticles

dominant ^[4] Fe³⁺

no Fe²⁺

Collaboration with J. Nogués (ICN2, Barcelona)

Example 1. Buried interface in core@shell nanoparticles

→ Proposed quantitative model for the internal structure

$$0 \le \text{Fe}_2 \text{O}_3 \le 5.0 \text{ nm} \le (\text{Mn,Fe})_3 \text{O}_4 \le 6.1 \text{ nm} \le \text{Mn}_3 \text{O}_4 \le 6.4 \text{ nm}$$

→ Quantitative understanding of measured bulk magnetic properties

$$M_s$$
 (model) = 46 ± 5 emu g⁻¹ vs M_s (SQUID) = 43 emu g⁻¹

Comparison to similar core@shell particles with sharper interface

higher magnetic coercivity, lower $T_{\rm B}$

We established a direct relation between magnetic properties and the interface quality

Bulk magnetometry provides an average image

What are the magnetic contributions of the core and the shell?

- Hard X-ray RIXS-MCD and soft X-ray MCD → bulk and surface sensitive information
- Co edge vs Mn edge → disentanglement of Co-bearing and Mn-bearing components

CoFe₂O₄ shell XMCD detected magnetization curve

Distribution of magnetic anisotropies in MnFe₂O₄@CoFe₂O₄

From TEM-EELS and x-ray measurements:

- limited interdiffusion and cationic rearrangement
- ferromagnetic coupling between core and shell

→ Emergent interface-driven magnetic properties of the core

Most investigations have been so far performed on size bidispersed ferrofluids

Binary ferrofluids offer a much larger interplay of dipole-dipole interactions:

= a physical mixture of two ferrofluids with different magnetic anisotropies

→ Combined with the effect of particle size, shape, and core@shell structuration

What is the influence of interparticle interactions on magnetic properties?

 $CoFe_2O_4$ (6nm) - $MnFe_2O_4$ (6 nm) binary ferrofluid (1:1, 0.1 % vol.)

What is the influence of interparticle interactions on magnetic properties?

Element-selective techniques are needed to understand the role of each component

Particle surface and interparticle interactions must be preserved:

→ Ferrofluids must be investigated as liquid or frozen phases

A static liquid cell for Hard X-ray RIXS-MCD

N. Daffé (PhD), H. Vitoux and M. Rovezzi (ID26, ESRF)

What are the magnetic properties beyond the average picture?

Element-selective magnetization curves measured by RIXS-MCD at 30 K (frozen phase)

 ${\rm CoFe_2O_4}$: magnetic coercivity is **30 % smaller** in the binary ferrofluid

 ${\rm MnFe_2O_4}$: magnetic coercivity is **40% larger** in the binary ferrofluid

Do interparticle interactions drive the modification of magnetic properties?

Cryogenic Transmission Electron Microscopy with EDX analysis

Binary ferrofluid

TEM: J. Zecevic (Utrecht University)

Evidence of neighbouring MnFe₂O₄ and CoFe₂O₄ particles in small clusters despite the very low particle concentration

Do interparticle interactions drive the modification of magnetic properties?

Monte-Carlo simulations of magnetic properties

Coll.: K. Trohidou (Athens Univ.)

Model: 50 particles dispersed heterogeneously based on TEM images

 $MnFe_2O_4$: magnetic coercivity is **40% larger** in the binary $CoFe_2O_4$: magnetic coercivity is **5% smaller** in the binary

→ consistent with the results of RIXS-MCD detected curves

Do interparticle interactions drive the modification of magnetic properties?

Monte-Carlo simulations of magnetic properties

Coll.: K. Trohidou (Athens Univ.)

The magnetic properties of the binary are qualitatively reproduced **only** when accounting for clusters involving CoFe₂O₄ and MnFe₂O₄ neigbouring particles

→ a direct relation between the nanoscale interparticle interactions and the modification of macroscopic magnetic properties

Conclusion and prospects

- The combination of surface- and bulk sensitive x-ray magnetic measurements provides the distribution of magnetic anisotropies and the internal structure of core@shell bimagnetic particles.
- Element specific magnetization curves in a binary ferrofluid allow disentangling the contribution of both magnetic components and revealing their interaction.
- RIXS-MCD with hard x-rays and custom made liquid cell offers new possibilities to investigate magnetic liquids where interparticle interactions and particle surface have been preserved.
- Current work on self-assembled ferrofluids showing particle assemblies that strongly affect their magnetic properties

Acknowledgements

Dr Niéli Daffé (now in Swiss Light Source) Dr Nadejda Bouldi (now in Heidelberg)

Funding: SOLEIL, Agence Nationale de la Recherche, CNRS, Sorbonne Université

The final word, using self-assembled 20 nm nano-flowers:

A RIXS-MCD endstation

(Nd₂Fe₁₄B or electromagnet)

ID26@ESRF in 2009 GALAXIES@SOLEIL in 2014

Fe K pre-edge in Fe²⁺ Fe³⁺₂ O₄

Valence of absorbing ion

- Valence of absorbing ion
- Coordination of absorbing ion:

Tetrahedral (RIXS-MCD = 15-20 %) Octahedral (RIXS-MCD = 2-5 %)

- Valence of absorbing ion
- Coordination of absorbing ion
- Orientation of magnetic moment:

Antiparallel or parallel to external magnetic field

Energy splittings are related to interactions in intermediate state (IS) and final state (FS)

Phys. Rev. Lett. 105, 037202 (2010)

1s2p RIXS-MCD in Fe oxides

1s2p RIXS-MCD at the Fe K edge in Fe₃O₄

M. Sikora, A. Juhin, TC Weng, P Sainctavit, C Detlefs, F De Groot, P Glatzel, Phys. Rev. Lett. 105, 037202 (2010)

Origin of the RIXS-MCD effect

Calc (Ligand Field Multiplet theory)

The RIXS-MCD intensity enhancement is a result of both reduced lifetime broadening and increased splitting in the $2p^53d^{n+1}$ final state

Comparison to K-edge XMCD

RIXS-MCD: Line scans

Comparison to K-edge XMCD

- Spectral features are sharper
- XMCD detected by RIXS: gain of factor of 10

Can be further improved if experimental resolution is improved

Comparison to L-edge XMCD

- Same order of magnitude
- Here, the contribution of tetrahedral Fe³⁺ is dominant

Comparison to K-edge XMCD

High quality XMCD spectra measured in Total Fluorescence Yield

Partial deconvolution from 1s corehole lifetime broadening (DECONV-GNXAS)

A. Gloter (LPS Orsay, France)

From TEM-EELS and XAS/XMCD/RIXS-MCD spectra :

- limited interdiffusion and cationic rearrangement
- Ferromagnetic coupling between core and shell